Source code for example_code.groups_abc
"""A module implementing the basic functionality of mathematical groups.
This version of the module uses inheritance and defines the base class as an
:class:`abc.ABC`.
"""
from abc import ABC, abstractmethod
from numbers import Integral
import numpy as np
[docs]class Element:
"""An element of the specified group.
Parameters
----------
group: Group
The group of which this is an element.
value:
The value of this entity. Valid values depend on the group.
"""
def __init__(self, group, value):
group._validate(value)
self.group = group
self.value = value
def __mul__(self, other):
"""Use * to represent the group operation."""
return Element(self.group,
self.group.operation(self.value,
other.value))
def __str__(self):
"""Return a string of the form value_group."""
return f"{self.value}_{self.group}"
def __repr__(self):
"""Return the canonical string representation of the element."""
return f"{type(self).__name__}{self.group, self.value!r}"
[docs]class Group(ABC):
"""A base class containing methods common to many groups.
Each subclass represents a family of parametrised groups.
Parameters
----------
n: int
The primary group parameter, such as order or degree. The
precise meaning of n changes from subclass to subclass.
"""
def __init__(self, n):
self.n = n
@property
@abstractmethod
def symbol(self):
"""Represent the group name as a character."""
pass
@abstractmethod
def _validate(self, value):
"""Ensure that value is an allowed element value in this Group."""
pass
[docs] @abstractmethod
def operation(self, a, b):
"""Return a ∘ b using the group operation ∘."""
pass
def __call__(self, value):
"""Create an element of this group."""
return Element(self, value)
def __str__(self):
"""Return a string in the form symbol then group parameter."""
return f"{self.symbol}{self.n}"
def __repr__(self):
"""Return the canonical string representation of the element."""
return f"{type(self).__name__}({self.n!r})"
[docs]class CyclicGroup(Group):
"""A cyclic group represented by integer addition modulo n."""
symbol = "C"
def _validate(self, value):
"""Ensure that value is a legitimate element value in this group."""
if not (isinstance(value, Integral) and 0 <= value < self.n):
raise ValueError("Element value must be an integer"
f" in the range [0, {self.n})")
[docs] def operation(self, a, b):
"""Perform the group operation on two values.
The group operation is addition modulo n.
"""
return (a + b) % self.n
[docs]class GeneralLinearGroup(Group):
"""The general linear group represented by n x n matrices."""
symbol = "G"
def _validate(self, value):
"""Ensure that value is a legitimate element value in this group."""
value = np.asarray(value)
if not (value.shape == (self.n, self.n)):
raise ValueError("Element value must be a "
f"{self.n} x {self.n}"
"square array.")
[docs] def operation(self, a, b):
"""Perform the group operation on two values.
The group operation is matrix multiplication.
"""
return a @ b